Abstract

Hypoxia is a prominent microenvironment feature in a range of disorders including cancer, rheumatoid arthritis (RA), atherosclerosis, inflammatory bowel disease (IBD), infection and obesity. Hypoxia promotes biological functions of fibroblast-like synoviocytes via regulating hypoxia-inducible factor 1α (HIF1α). Dysregulated protein citrullination in RA drives the production of antibodies to citrullinated proteins, a highly specific biomarker of RA. However, the mechanisms promoting citrullination in RA are not yetfullyelucidated. In this study, we investigated whether pathophysiological hypoxia as found in the rheumatoid synovium modulates the citrullination in human fibroblast-like synoviocytes (HFLS). Here, we found that peptidylarginine deiminase 2 (PAD2) and citrullinated proteins were increased in HFLS after exposure to hypoxia. Moreover, knocking down HIF1α by HIF1α siRNA ameliorated the expression of PAD2 and citrullinated proteins. Collectively, this study provides a new mechanism involved in generating citrullinated proteins: hypoxia promotes citrullination and PAD production in HFLS. Concurrently, we also proposed a novel hypoxia involved mechanism in RA pathogenesis. This study deepens our understanding of the role of hypoxia in the pathogenesis of RA and provides a potential therapeutic strategy for RA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.