Abstract

Glioblastoma (GBM) is a hypoxic and "immune-cold" tumor containing rich stromal signaling molecules and cell populations, such as proteases and immunosuppressive tumor-associated macrophages (TAMs). Here, we seek to profile and characterize the potential proteases that may contribute to GBM immunosuppression. Legumain (LGMN) emerges as the key protease that is highly enriched in TAMs and transcriptionally upregulated by hypoxia-inducible factor 1-alpha (HIF1α). Functionally, the increased LGMN promotes TAM immunosuppressive polarization via activating the GSK-3β-STAT3 signaling pathway. Inhibition of macrophage HIF1α and LGMN reduces TAM immunosuppressive polarization, impairs tumor progression, enhances CD8+ Tcell-mediated anti-tumor immunity, and synergizes with anti-PD1 therapy in GBM mouse models. Thus, LGMN is a key molecular switch connecting two GBM hallmarks of hypoxia and immunosuppression, providing an actionable therapeutic intervention for this deadly disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.