Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive cancer with limited therapeutic options. Hypoxia is a common feature of the tumor microenvironment that reportedly promotes tumorigenesis. Long non-coding RNAs (lncRNAs) are a class of regulatory molecules with diverse functions in cancer biology. This study aimed to identify hypoxia-induced lncRNAs associated with HCC and evaluate their potential as prognostic and therapeutic biomarkers. We employed microarray and The Cancer Genome Atlas (TCGA) data to identify hypoxia-induced lncRNAs in HCC. Subsequently, we focused on CTD-2510F5.4, a candidate lncRNA, and predicted its functional roles in HCC using Gene Ontology (GO) and Guilt-by-Association (GBA) analyses. We validated its expression under hypoxia in Huh7 and HepG2 cells using RT-PCR. Functional assays, including CCK8, wound-healing, and transwell assays, were performed to assess the effects of CTD-2510F5.4 overexpression on HCC cell proliferation, invasion, and metastasis potential. Furthermore, we investigated the association between CTD-2510F5.4 expression and patient prognosis, tumor mutation signature, immune microenvironment characteristics, and therapeutic response to different treatment modalities. Our data demonstrated a significant upregulation of CTD-2510F5.4 expression in response to hypoxia. Functional enrichment analyses revealed the involvement of CTD-2510F5.4 in cell cycle regulation, E2F targets, G2M checkpoint control, and MYC signaling pathways. Functionally, CTD-2510F5.4 overexpression promoted HCC cell proliferation, invasion, and metastasis. Patients with high CTD-2510F5.4 expression exhibited a worse prognosis, a higher prevalence of TP53 mutations, increased infiltration by immunosuppressive regulatory T cells, elevated expression of immune checkpoint molecules, and higher TIDE scores indicative of immune dysfunction and exclusion. Notably, patients with low CTD-2510F5.4 expression displayed greater sensitivity to immunotherapy and antiangiogenic therapy, while those with high expression responded better to chemotherapy. Our findings suggest that CTD-2510F5.4 plays a critical role in HCC progression and immune modulation. Its potential as a prognostic biomarker and a predictor of therapeutic response warrants further investigation for personalized treatment strategies in HCC patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.