Abstract
Annual hypoxia in the Chesapeake Bay has expanded to the point where Darwinian fitness of juvenile striped bass (Morone saxatilis) may depend on their ability to perform in low-oxygen environments. The locomotion they use in predator/prey dynamics relies primarily on white (type II) muscle that is powered by anaerobic metabolic pathways and has generally been thought to be immune to aquatic hypoxia. We tested the sprint performance of 15 juvenile striped bass twice under acute hypoxia (20% air saturation [AS]) 5 wk apart and once under normoxia (>85% AS) in between. Average sprint performance was lower under the first hypoxia exposure than in normoxia and increased in the second hypoxia test relative to the first. The rank order of individual sprint performance was significantly repeatable when comparing the two hypoxia tests but not when compared with sprint performance measured under normoxic conditions. The maximum sprint performance of each individual was also significantly repeatable within a given day. Thus, sprint performance of striped bass is reduced under hypoxia, is phenotypically plastic, and improves with repetitive hypoxia exposures but is unrelated to relative sprint performance under normoxia. Since energy to fuel a sprint comes from existing ATP and creatine phosphate stores, the decline in sprint performance probably reflects reduced function of a part of the reflex chain leading from detection of aversive stimuli to activation of the muscle used to power the escape response.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have