Abstract
BackgroundBrainstem raphe (BR) hypoechogenicity in transcranial sonography (TCS) has been depicted in patients with major depression (MD) and in depressed patients with different neurodegenerative diseases. But, up to date, the association of BR alterations in TCS with depression in migraineurs has never been reported. This study was to investigate the possible role of BR examination via TCS in migraineurs with depression.MethodsForty two migraine without aura (MwoA) patients and 40 healthy controls were recruited. Echogenicity of lentiform nuclei (LN), caudate nuclei (CN), substantia nigra (SN) and brainstem raphe (BR) and width of the frontal horns of the lateral ventricles and the third ventricle were assessed with TCS. The diagnosis of depression was based on the criteria of the Diagnostic and Statistical Manual of Mental Disorders IV (DSM –IV), and the severity of depression was measured by Hamilton Rating Scale for Depression (HAM-D) and Hospital Anxiety and Depression Scale depression subscale (HADS-D).ResultsThere were no significant differences between migraineurs and controls in the width of frontal horn of the lateral ventricle (p = 0.955), width of third ventricle (p = 0.129) as well as in the echogenicity of SN (p = 0.942), CN (p = 0.053), LN (p = 0.052) and BR (p = 0.677). Here, it seems that more migraineurs were detected with increased echogenecity of CN and LN compared with controls (33.3% versus 15.0% for CN, 19.0% versus 5.0% for LN) though they had no statistical significance. Patients with hypoechogenic BR had significantly higher HAM-D and HADS-D scores than those with normal BR signal (p = 0.000 for both HAM-D and HADS-D), and most (83.33%) migraineurs with depression exhibited hypoechogenic raphe but none (0.00%) of the migraineurs without depression exhibited hypoechogenic raphe (p = 0.000).ConlusionsTCS signal alteration of BR can be a biomarker for depression in migraine but it is not associated with migraine headache itself. LN and CN alterations in TCS may reflect a potential role of them in the pathogenesis of migraine, which needs to be further elucidated.
Highlights
Brainstem raphe (BR) hypoechogenicity in transcranial sonography (TCS) has been depicted in patients with major depression (MD) and in depressed patients with different neurodegenerative diseases
There were no significant difference between migraineurs and controls in the width of frontal horn of the lateral ventricle (p = 0.955), width of third ventricle (p = 0.129) as well as the echogenicity of substantia nigra (SN) (p = 0.942), caudate nuclei (CN) (p = 0.053), lentiform nuclei (LN) (p = 0.052) and brainstem raphe (BR) (p = 0.677) (Table 2)
Some Magnetic resonance imaging (MRI) studies have shown structural and functional alterations of basal ganglia (BG) in migraine patients [18, 27, 28], and this alterations may be indicators of migraine chronification [17].The globus pallidus is found to be associated with disease duration and the putamen associated with headache frequency in migraineurs, which further validated the probable role of the BG in the pathogenesis of migraine [18]
Summary
Brainstem raphe (BR) hypoechogenicity in transcranial sonography (TCS) has been depicted in patients with major depression (MD) and in depressed patients with different neurodegenerative diseases. Up to date, the association of BR alterations in TCS with depression in migraineurs has never been reported. Transcranial sonography (TCS) is a reliable and non-invasive neuroimaging technique for detecting small deep brain parenchyma such as basal ganglia (BG), substantia nigra (SN) and brainstem raphe (BR) [1]. Up to date, it has never been reported about the association of BR alterations in TCS with depression in migraineurs, though BR hypoechogenicity has been shown to be correlated to higher headache attack frequency in migraineurs without depression in one study [14] but not in another one study [15]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have