Abstract
The hypervolume subset selection problem consists of finding a subset, with a given cardinality k, of a set of nondominated points that maximizes the hypervolume indicator. This problem arises in selection procedures of evolutionary algorithms for multiobjective optimization, for which practically efficient algorithms are required. In this article, two new formulations are provided for the two-dimensional variant of this problem. The first is a (linear) integer programming formulation that can be solved by solving its linear programming relaxation. The second formulation is a k-link shortest path formulation on a special digraph with the Monge property that can be solved by dynamic programming in [Formula: see text] time. This improves upon the result of [Formula: see text] in Bader ( 2009 ), and slightly improves upon the result of [Formula: see text] in Bringmann etal. ( 2014b ), which was developed independently from this work using different techniques. Numerical results are shown for several values of n and k.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.