Abstract

The favorable physicochemical properties are essential for the application of protein-based nanovehicles in the field of biomaterials. Herein, we found that the thermal stability of Marsupenaeus japonicus ferritin (MjFer) (Tm = 109.1 ± 0.4 °C) is markedly higher than human H-chain ferritin (HuHF) (Tm = 87.7 ± 0.3 °C), although they share a high structural similarity. Multiple results indicated that the promoted thermal stability of MjFer is mainly derived from the salt bridges located at the C3 interface. Consequently, MjFer exhibits strong protective effects on encapsulated curcumin upon exposure at high temperatures. In contrast, most of the curcumin loaded HuHF composites precipitated rapidly under the same conditions. These findings elucidated the molecular mechanism of the hyperthermostability of MjFer and illustrated that MjFer could act as a robust insulation nanocarrier for bioactive compounds against various thermal treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.