Abstract

Spontaneously hypertensive rat (SHR) lines differ in their susceptibility to hypertensive end-organ disease and may provide an informative model of genetic risk of disease. Lines derived from the original SHR-B and SHR-C clades are highly resistant to hypertensive end-organ disease, whereas lines derived from the SHR-A clade were selected for stroke susceptibility and experience hypertensive renal disease. Here we characterize the temporal development of progressive renal injury in SHR-A3 animals consuming 0.3% sodium in the diet and drinking water. SHR-A3 rats demonstrate albuminuria, glomerular damage, tubulointerstitial injury, and renal fibrosis that emerge at 18 weeks of age and progress. Mortality of SHR-A3 animals was 50% at 40 weeks of age, and animals surviving to this age had reduced renal function. In contrast SHR-B2, which are 87% genetically identical to SHR-A3, are substantially protected from renal injury and demonstrate only moderate changes in albuminuria and renal histological injury over this time period. At 40 weeks of age, electron microscopy of the renal glomerulus revealed severe podocyte effacement in SHR-A3, but slit diaphragm architecture in SHR-B2 at this age was well preserved. Renal injury traits in the F1 and F2 progeny of an intercross between SHR-A3 and SHR-B2 were measured to determine heritability of renal injury in this model. Heritability of albuminuria, glomerular injury, and tubulointerstitial injury were estimated at 48.9, 66.5 and 58.6%, respectively. We assessed the relationship between blood pressure and renal injury measures in the F2 animals and found some correlation between these variables that explain up to 26% of the trait variation. Quantitative trait locus (QTL) mapping was performed using over 200 single nucleotide polymorphism markers distributed across the 13% of the genome that differs between these two closely related lines. Mapping of albuminuria, tubulointerstitial injury, and renal fibrosis failed to identify loci linked with disease susceptibility, suggesting a complex inheritance of disease risk. We detected a single QTL conferring susceptibility to glomerular injury that was confined to a small haplotype block at chromosome 14:70-76Mb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.