Abstract

We carry out ADM splitting in the Lagrangian formulation and establish a procedure in which (almost) all of the unphysical components of the metric are removed by using the 4D diffeomorphism and the measure-zero 3D symmetry. The procedure introduces a constraint that corresponds to the Hamiltonian constraint of the Hamiltonian formulation, and its solution implies that the 4D dynamics admits an effective description through 3D hypersurface physics. As far as we can see, our procedure implies potential renormalizability of {the ADM formulation of} 4D Einstein gravity for which a complete gauge-fixing in the ADM formulation and hypersurface foliation of geometry are the key elements. If true, this implies that the alleged unrenormalizability of 4D Einstein gravity may be due to the presence of the unphysical fields. The procedure can straightforwardly be applied to quantization around a flat background; the Schwarzschild case seems more subtle. We discuss a potential limitation of the procedure when applying it to explicit time-dependent backgrounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.