Abstract
Hyperspectral unmixing is one of the most important techniques in hyperspectral remote sensing image analysis. During the past decades, many models have been widely used in hyperspectral unmixing, such as nonnegative matrix factorization (NMF) model, sparse regression model, etc. Most recently, a new matrix factorization model, deep matrix, is proposed and shows good performance in face recognition area. In this paper, we introduce the deep matrix factorization (DMF) for hyperspectral unmixing. In this method, the DMF method is applied for hyperspectral unmixing. Compared with the traditional NMF-based unmixing methods, DMF could extract more information with multiple-layer structures. An optimization algorithm is also proposed for DMF with two designed processes. Results on both synthetic and real data have validated the effectiveness of this method, and shown that it has outperformed several state-of-the-art unmixing approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Wavelets, Multiresolution and Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.