Abstract

AbstractBackgroundGrape composition is of high interest for producing quality wines. For that, grape analyses are necessary, and require sample preparation, whether with classical analyses or with NIR analyses. The aim of the study was to test the ability of hyperspectral imaging (HSI), a nondestructive analysis to assess their composition. For that, seven grape varieties were analyzed for two vintages. Partial least squares (PLS) and discriminate (PLS‐DA) and PLS‐R were realized respectively in order to classify the berries, to validate the data sets, and to provide models to assess grape composition after a 1st derivative data pretreatment.ResultsHSI allowed a 100% good classification of the grape varieties. It showed good results to assess technological ripening parameters (sugar and acid contents) as well as phenolic content (TPI, Total Phenolics, Total Anthocyanins, Total Flavonoids, and their extractable equivalents) (globally R2 > 0.81). However, it was not possible to reach the color intensity of grapes.ConclusionHSI led to generate good models to assess wine grape composition. The quality of the generated models was dependent on the color of grapes and the parameter considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.