Abstract

Non-equilibrium plasmas at atmospheric pressure are often characterized by optical emission spectroscopy. Despite the simplicity of recording optical emission spectra in plasmas, the determination of spatially resolved plasma properties (e.g., electron temperature) in an efficient way is very challenging. In this study, spatially resolved optical images of a microwave argon plasma jet expanding into the ambient air are recorded over a wide range of wavelengths using a hyperspectral imaging system based on a tunable Bragg-grating imager coupled to a scientific complementary metal-oxide-semiconductor camera. The system's working principle is detailed, along with the necessary post-processing steps. Further analysis of the spatial-spectral data, including the Abel transform used to determine 2D radially resolved spatial mappings, is also presented. Overall, the proposed approach provides unprecedented cartographies of key plasma parameters, such as argon and oxygen line emission intensities, Ar metastable number densities, and argon excitation temperatures. Considering that all these plasma parameters are obtained from measurements performed in a reasonable time, Bragg-grating-based hyperspectral imaging constitutes an advantageous plasma diagnostic technique for detailed analysis of microwave plasma jets used in several applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.