Abstract
Hyperspectral images (HSIs) are often degraded by different kinds of noises. Low rank (LR)-based methods have achieved great performance in HSI denoising problem. However, the LR-based methods only consider the rank of the whole spectral space, conducting no constraints on the intrinsic structure within the LR space. In fact, the spectral vectors can be classified into different categories based on the land-covers. As a result, the spectral space can be modelled as a union of multiple LR subspaces. Regarding this structure, we introduce the framework of subspace low rank (SLR) representation into HSI denoising problem and propose a novel SLR-based denoising method for HSIs. Experiments conducted on both simulated and real data show that our method achieves great improvement over the state-of-art methods qualitatively and quantitatively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.