Abstract
Abstract Hyperspectral images (HSIs) acquired actually often contain various types of noise, such as Gaussian noise, impulse noise, and dead lines. On the basis of land covers, the spectral vectors in HSI can be separated into different classifications, which means the spectral space can be regarded as a union of several low-rank (LR) subspaces rather than a single LR subspace. Recently, LR constraint has been widely applied for denoising HSI. However, those LR-based methods do not constrain the intrinsic structure of spectral space. And these methods cannot make better use of the spatial or spectral features in an HSI cube. In this article, a framework named subspace low-rank representation combined with spatial‐spectral total variation regularization (SLRR-SSTV) is proposed for HSI denoising, where the SLRR is introduced to more precisely satisfy the low-rank property of spectral space, and the SSTV regularization is involved for the spatial and spectral smoothness enhancement. An inexact augmented Lagrange multiplier method by alternative iteration is employed for the SLRR-SSTV model solution. Both simulated and real HSI experiment results demonstrate that the proposed method can achieve a state-of-the-art performance in HSI denoising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.