Abstract

Due to the remarkable achievements obtained by deep learning methods in the fields of computer vision, an increasing number of researches have been made to apply these powerful tools into hyperspectral image (HSI) classification. So far, most of these methods utilize a pre-training stage followed by a fine-tuning stage to extract deep features, which is not only tremendously time-consuming but also depends largely on a great deal of training data. In this study, we propose an efficient deep learning based method, namely, Random Patches Network (RPNet) for HSI classification, which directly regards the random patches taken from the image as the convolution kernels without any training. By combining both shallow and deep convolutional features, RPNet has the advantage of multi-scale, which possesses a better adaption for HSI classification, where different objects tend to have different scales. In the experiments, the proposed method and its two variants RandomNet and RPNet–single are tested on three benchmark hyperspectral data sets. The experimental results demonstrate the RPNet can yield a competitive performance compared with existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.