Abstract
In real world datasets of aerial images, the objects of interest are often missing, hard to annotate and of varying aspects. The framework of unsupervised Anomaly Detection (AD) is highly relevant in this context, and Variational Autoencoders (VAEs), a family of popular probabilistic models, are often used. We develop on the literature of VAEs for AD in order to take advantage of the particular textures that appear in natural aerial images. More precisely we propose a new VAE model with a Gaussian Random Field (GRF) prior (VAE-GRF), which generalizes the classical VAE model, and we provide the necessary procedures and hypotheses required for the model to be tractable. We show that, under some assumptions, the VAE-GRF largely outperforms the traditional VAE and some other probabilistic models developed for AD. Our results suggest that the VAE-GRF could be used as a relevant VAE baseline in place of the traditional VAE with very limited additional computational cost. We provide competitive results on the MVTec reference dataset for visual inspection, and two other datasets dedicated to the task of unsupervised animal detection in aerial images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.