Abstract
The phenomenon of spectral aliasing exists for coastal wetland object types, which leads to class mixing. This letter proposes a multiobject convolutional neural network (CNN) decision fusion classification method for hyperspectral images of coastal wetlands. This method adopts decision fusion based on fuzzy membership rules applied to single-object CNN classification to obtain higher classification accuracy. Experimental results demonstrate the effectiveness of the proposed method for the six object types, including water, tidal flat, reed, and other vegetation types. The overall accuracy of the decision fusion classification method based on fuzzy membership is 82.11%, which is 3.33% and 6.24% higher than those of single-object feature band CNN and support vector machine methods. The classification method based on multiobject CNN decision fusion inherits the characteristics of single-object feature bands of the CNN, making it a practical approach to image classification under the challenging conditions in which class mixing occurs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have