Abstract

Oxidative stress is implicated as a major cause of aging and age-related diseases, such as Parkinson's and Alzheimer's, as well as ischemia-reperfusion injury in stroke. The mitochondrial electron transport chain is the principal source of reactive oxygen species within cells. Despite considerable medical interest, the molecular mechanisms that regulate reactive oxygen species formation within the mitochondrion remain poorly understood. Here, we report the isolation and characterization of a Drosophila mutant with a defect in subunit b of succinate dehydrogenase (SDH; mitochondrial complex II). The sdhB mutant is hypersensitive to oxygen and displays hallmarks of a progeroid syndrome, including early-onset mortality and age-related behavioral decay. Pathological analysis of the flight muscle, which is amongst the most highly energetic tissues in the animal kingdom, reveals structural abnormalities in the mitochondria. Biochemical analysis shows that, in the mutant, there is a complex II-specific respiratory defect and impaired complex II-mediated electron transport, although the other respiratory complexes remain functionally intact. The complex II defect is associated with an increased level of mitochondrial hydrogen peroxide production, suggesting a possible mechanism for the observed sensitivity to elevated oxygen concentration and the decreased lifespan of the mutant fly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.