Abstract
High Performance Computing (HPC) demand is on the rise, particularly for large distributed computing. HPC systems have, by design, very heterogeneous architectures, both in computation and in communication bandwidth, resulting in wide variations in the cost of communications between compute units. If large distributed applications are to take full advantage of HPC, the physical communication capabilities must be taken into consideration when allocating workload. Hypergraphs are good at modelling total volume of communication in parallel and distributed applications. To the best of our knowledge, there are no hypergraph partitioning algorithms to date that are architecture-aware. We propose a novel restreaming hypergraph partitioning algorithm (HyperPRAW) that takes advantage of peer to peer physical bandwidth profiling data to improve distributed applications performance in HPC systems. Our results show that not only the quality of the partitions achieved by our algorithm is comparable with state-of-the-art multilevel partitioning, but that the runtime performance in a synthetic benchmark is significantly reduced in 10 hypergraph models tested, with speedup factors of up to 14x.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have