Abstract
When plants are exposed to drought stress, there is a trade-off between plant growth and stress responses. Here, we identified a signaling mechanism for the initial steps of the drought-growth trade-off. Phosphoproteomic profiling revealed that Raf13, a B1 subgroup Raf-like kinase, is dephosphorylated under drought conditions. Raf13 and the related B1-Raf Raf15 are required for growth rather than the acquisition of osmotolerance. We also found that Raf13 interacts with B55-family regulatory subunits of protein phosphatase 2A (PP2A), which mediates hyperosmolarity-induced dephosphorylation of Raf13. In addition, Raf13 interacts with an AGC kinase INCOMPLETE ROOT HAIR ELONGATION HOMOLOG 1 (IREH1), and Raf13 and IREH1 have similar functions in regulating cellular responses that promote plant growth. Overall, our results support a model in which Raf13-IREH1 activity promotes growth under nonstressed conditions, whereas PP2A activity suppresses Raf13-IREH1 during osmotic stress to modulate the physiological "trade-off" between plant growth and stress responses.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have