Abstract
Relativistic mean-field theory with $\delta$ meson, nonlinear isoscalar self-interactions and isoscalar-isovector cross interaction terms with parametrizations obtained to reproduce Dirac-Brueckner-Hartree-Fock calculations for nuclear matter is used to study asymmetric nuclear matter properties in $\beta$-equilibrium, including hyperon degrees of freedom and (hidden) strange mesons. Influence of cross interaction on composition of hyperon matter and electron chemical potential is examined. Softening of nuclear equation of state by the cross interactions results in lowering of hyperonization, although simultaneously enhancing a hyperon-induced decrease of the electron chemical potential, thus indicating further shift of a kaon condensate occurence to higher densities.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have