Abstract
Cell immortalization is the initial step for cancer development. To identify the differentially expressed genes regulated by DNA methylation over the course of human primary bronchial epithelial cell (HPBECs) immortalization, an immortalized HBE cell line (HBETT) was generated via introduction of an SV40 LT and a catalytic subunit of human telomerase reverse transcriptase (hTERT) into the HPBECs. Microarrays of mRNA and DNA methylation were performed to compare the transcriptomes and DNA methylomes between these two types of cells. The results from the mRNA microarray revealed many genes whose expression changed upon cell immortalization. We identified signatures including global hypomethylation, perturbation of ECM-receptor interaction, focal adhesion, and PI3K-Akt pathways associated with cell immortalization. Moreover, we revealed 155 differentiated methylation regions (DMRs) within the CpG islands (CGIs) of 42 genes and the perturbation of several key pathways that might be involved in HBE cell immortalization. Among these genes, the hypermethylation of the plasma glutamate carboxypeptidase (PGCP) gene appeared specifically in lung cancer tissues. The inhibition of PGCP expression by promoter hypermethylation was observed in both immortal HBETT cells and benzo[a]pyrene (Bap)-transformed HBE cells. In conclusion, these findings provide new insight into the epigenetic modifications that are critical in the transition and maintenance of cell immortalization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.