Abstract
DNA methylation plays a vital role during the development of tumorigenesis. The purpose of this study is to identify candidate DNA methylation drivers during progression of bladder cancer (BLCA). The methylation spectrum in bladder cancer tissues was detected by CHARM analysis, and methylated ITGA8 was selected for further study due to its low expression. Methylation levels in BLCA tissues and cells were detected with methylated-specific PCR (MSP), while mRNA expression and methylation of ITGA8 were detected by qRT-PCR and MSP. After treatment with 5-Aza-dC (DNA methylation inhibitor), the proliferation, migration, and invasion abilities of BLCA cells were determined by MTT, wound healing, and transwell assays, respectively. Flow cytometric analysis was performed to evaluate any variance in the cell cycle. In addition, the effect of demethylated ITGA8 on BLCA tumor growth was verified with an in vivo xenograft tumor model. Based on the methylation profiling of BLCA, ITGA8 was identified to be hypermethylated. ITGA8 methylation levels in BLCA tissues and cells were upregulated, and 5-Aza-dC significantly suppressed ITGA8 methylation levels and increased ITGA8 mRNA expression. Furthermore, after treatment with 5-Aza-dC, the propagation, migration, and invasiveness of the cancer cells were inhibited, and more cancer cells were arrested at the G0/G1 phase. In vivo assays further demonstrated that 5-Aza-dC could impede BLCA tumor growth by repressing methylation levels of ITGA8 and increasing ITGA8 mRNA expression. Hypermethylated ITGA8 facilitated BLCA progression, and 5-Aza-dC treatment inhibited BLCA cell propagation and metastasis by decreasing methylation levels of ITGA8 and inducing cell cycle arrest.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have