Abstract

Hypertension is common in the general population. Management of hypertensive patients at risk of hyperkalemia is challenging due to potential life-threatening complications such as cardiac arrest. Chronic hyperkalemia is often associated with impaired renal ability to excrete excessive potassium ions (K+). This may refer to chronic kidney disease or certain pharmacological interventions, including broadly used renin-angiotensin-aldosterone system and calcineurin inhibitors. Understanding the intrinsic mechanisms permitting kidney adaptations to hyperkalemia is critical for choosing therapeutic strategies. Valuable insights were obtained from the analysis of familial hyperkalemic hypertension (FHHt) syndrome, which became a classic model for coincidence of high blood pressure and hyperkalemia. FHHt can be caused by mutations in several genes, all of them resulting in excessive activity of with-no-lysine kinases (WNKs) in the distal nephron of the kidney. WNKs have been increasingly recognized as key signalling enzymes in the regulation of renal sodium ions (Na+) and K+ handling, enabling adaptive responses to systemic shifts of potassium homoeostasis consequent to variations in dietary potassium intake or disease. The WNK signalling pathway recruits a complex protein network mediating catalytic and non-catalytic effects of distinct WNK isoforms on relevant Na+- or K+-transporting proteins. In this review article, we summarize recent progress in understanding WNK signalling. An update of available models for renal adaptation to hyperkalemic conditions is presented. Consequences for blood pressure regulation are discussed. Pharmacological targeting of WNKs or their substrates offers promising options to manage hypertension while preventing hyperkalemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call