Abstract
Surface-exposed HSP70 and calreticulin are damage-associated molecular patterns (DAMPs) crucially involved in modulating the success of cancer therapy. Photodynamic therapy (PDT) involves the administration of a photosensitising (PTS) agent followed by visible light-irradiation. The reactive oxygen species that are thus generated directly kill tumours by damaging their microvasculature and inducing a local inflammatory reaction. PDT with the PTS photofrin is associated with DAMPs exposure, but the same is not true for other PTSs. Here, we show that when cancer cells are treated with hypericin-based PDT (Hyp-PDT), they surface-expose both HSP70 and calreticulin (CRT). Induction of CRT exposure was not accompanied by co-exposure of ERp57, but this did not compromise the ability of the exposed CRT to regulate the phagocytosis of Hyp-PDT-treated cancer cells by dendritic cells. Interestingly, we found that Hyp-PDT-induced CRT exposure (in contrast to anthracycline-induced CRT exposure) was independent of the presence of ERp57. Our results indicate that Hyp-PDT is a potential anti-cancer immunogenic modality.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have