Abstract
We consider the isomorphism problem for hypergraphs taking as input two hypergraphs over the same set of vertices V and a permutation group Γ over domain V , and asking whether there is a permutation γ ε Γ that proves the two hypergraphs to be isomorphic. We show that for input groups, all of whose composition factors are isomorphic to a subgroup of the symmetric group on d points, this problem can be solved in time ( n + m ) O ((log d ) c ) for some absolute constant c where n denotes the number of vertices and m the number of hyperedges. In particular, this gives the currently fastest isomorphism test for hypergraphs in general. The previous best algorithm for this problem due to Schweitzer and Wiebking (STOC 2019) runs in time n O ( d ) m O (1) . As an application of this result, we obtain, for example, an algorithm testing isomorphism of graphs excluding K 3, h ( h ≥ 3) as a minor in time n O ((log h ) c ) . In particular, this gives an isomorphism test for graphs of Euler genus at most g running in time n O ((log g ) c ) .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.