Abstract

Stochastic Galerkin formulations of the two-dimensional shallow water systems parameterized with random variables may lose hyperbolicity, and hence change the nature of the original model. In this work, we present a hyperbolicity-preserving stochastic Galerkin formulation by carefully selecting the polynomial chaos approximations to the nonlinear terms in the shallow water equations. We derive a sufficient condition to preserve the hyperbolicity of the stochastic Galerkin system which requires only a finite collection of positivity conditions on the stochastic water height at selected quadrature points in parameter space. Based on our theoretical results for the stochastic Galerkin formulation, we develop a corresponding well-balanced hyperbolicity-preserving central-upwind scheme. We demonstrate the accuracy and the robustness of the new scheme on several challenging numerical tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call