Abstract

Polar dielectrics with low crystal symmetry and sharp phonon resonances can support hyperbolic shear polaritons, which are highly confined surface modes with frequency-dependent optical axes and asymmetric dissipation features. So far, these modes have been observed only in bulk natural materials at midinfrared frequencies, with properties limited by available crystal geometries and phonon resonance strength. Here, we introduce hyperbolic shear metasurfaces, which are ultrathin engineered surfaces supporting hyperbolic surface modes with symmetry-tailored axial dispersion and loss redistribution that can maximally enhance light-matter interactions. By engineering effective shear phenomena in these engineered surfaces, we demonstrate geometry-controlled, ultraconfined, low-loss hyperbolic surface waves with broadband Purcell enhancements applicable across a broad range of the electromagnetic spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.