Abstract
Current work presents a new approach to quantum color codes on compact surfaces with genus g\geq2 using the identification of these surfaces with hyperbolic polygons and hyperbolic tessellations. We show that this method may give rise to color codes with a very good parameters and we present tables with several examples of these codes whose parameters had not been shown before. We also present a family of codes with minimum distance d=4 and the encoding rate asymptotically going to 1 while n\rightarrow\infty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.