Abstract

Small noise can induce rare transitions between metastable states, which can be characterized by Maximum Likelihood Paths (MLPs). Nongradient systems contrast gradient systems in that MLP does not have to cross the separatrix at a saddle point, but instead possibly at a point on a hyperbolic periodic orbit. A numerical approach for identifying such unstable periodic orbits is proposed based on String method. In a special class of nongradient systems (‘orthogonal-type’), there are provably local MLPs that cross such saddle point or hyperbolic periodic orbit, and the separatrix crossing location determines the associated local maximum of transition rate. In general cases, however, the separatrix crossing may not determine a unique local maximum of the rate, as we numerically observed a counter-example in a sheared 2D-space Allen–Cahn SPDE. It is a reasonable conjecture that there are always local MLPs associated with each attractor on the separatrix, such as saddle point or hyperbolic periodic orbit; our numerical experiments did not disprove so.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.