Abstract
Abstract We study the dynamical properties of objects in hyperbolic orbits passing through the inner Solar system in the context of two different potential sources: interstellar space and the Oort cloud. We analytically derive the probability distributions of eccentricity, e, and perihelion distance, q, for each source and estimate the numbers of objects produced per unit of time as a function of these quantities. By comparing the numbers from the two sources, we assess which origin is more likely for a hyperbolic object having a given eccentricity and perihelion distance. We find that the likelihood that a given hyperbolic object is of interstellar origin increases with decreasing eccentricity and perihelion. Conversely, the likelihood that a hyperbolic object has been scattered from the Oort cloud by a passing star increases with decreasing eccentricity and increasing perihelion. By carefully considering their orbital elements, we conclude that both 1I/2017 U1 ’Oumuamua (e ≃ 1.2 and q ≃ 0.26 au) and 2I/2019 Q4 Borisov (e ≃ 3.3 and q ≃ 2 au) are most likely of interstellar origin, not scattered from the Oort cloud. However, we also find that Oort cloud objects can be scattered into hyperbolic orbits like those of the two known examples, by sub-stellar and even sub-Jovian mass perturbers. This highlights the need for better characterization of the low mass end of the free-floating brown dwarf and planet population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.