Abstract
We consider a model of the in situ Oort cloud which is isotropic with a random distribution of perihelia directions and angular momenta. The energy distribution adopted has a continuous range of values appropriate for long-period (>200 yr) comets. Only the tidal torque of the Galaxy is included as a perturbation of comet orbits and it is approximated to be that due to a quasi-steady state distribution of matter with disk-like symmetry. The time evolution of all orbital elements can be analytically obtained for this case. In particular, the change in the perihelion distance per orbit and its dependence on other orbital elements is readily found. We further make the assumption that a comet whose perihelion distance was beyond 15 AU during its last passage through the Solar System would have orbit parameters that are essentially unchanged by planetary perturbations. Conversely, if the prior passage was inside 15 AU we assume that planetary perturbations would have removed the comet from the in situ energy distribution accessible by the galactic tide. Comets which had their perihelia changed from beyond 15 AU to within 5 AU in a single orbit are taken to be observable. We are able to track the evolution of 106 comets as they are made observable by the galactic tidal torque. Detailed results are obtained for the predicted distribution of new (0 < 1/a < 10-4 AU-1) comets. Further, correlations between orbital elements can be studied. We present predictions of observed distributions and compare them with the random in situ results as well as with the actual observed distributions of class I comets. The predictions are in reasonable agreement with actual observations and, in many cases, are significantly different from random when perihelia directions are separated into galactic northern and southern hemispheres. However the well-known asymmetry in the north-south popUlations of perihelia remains to be explained. Such an asymmetry is consistent with the dominance of tidal torques today if a major stochastic event produced it in the past since tidal torques are unable to cause the migration of perihelia across the latitude barriers ±26°.6 in the disk model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.