Abstract

We prove that the Cauchy problem for parallel null vector fields on smooth Lorentzian manifolds is well posed. The proof is based on the derivation and analysis of suitable hyperbolic evolution equations given in terms of the Ricci tensor and other geometric objects. Moreover, we classify Riemannian manifolds satisfying the constraint conditions for this Cauchy problem. It is then possible to characterise certain holonomy reductions of globally hyperbolic manifolds with parallel null vector in terms of flow equations for Riemannian special holonomy metrics. For exceptional holonomy groups these flow equations have been investigated in the literature before in other contexts. As an application, the results provide a classification of Riemannian manifolds admitting imaginary generalised Killing spinors. We will also give new local normal forms for Lorentzian metrics with parallel null spinor in any dimension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.