Abstract

Hyperbaric storage at naturally variable room temperature (RT) conditions (18–21 °C) and above (30 °C) was evaluated as a possible new food preservation method, regardless of temperature. Preservation of watermelon juice (used as a case study of a highly perishable food) at RT and 5 °C at atmospheric pressure was compared to preservation under 100 MPa at RT. After 8 h of hyperbaric storage at 100 MPa, the initial microbial loads of the watermelon juice were reduced by 1 log unit for total aerobic mesophiles, and 1–2 log units for Enterobacteriaceae and yeasts and moulds, to levels of about 3 log units for the former and below the detection limit for the latter, and remained thereafter unchanged up to 60 h. Similar results were obtained at 30 °C at 100 MPa after 8 h. At atmospheric pressure at RT (24 h) and 30 °C (8 h), microbial levels were already above quantification limits and unacceptable for consumption. Furthermore, pressure attenuated the increase in titratable acidity verified at atmospheric pressure, but caused higher colour changes, especially a higher lightness and a lower browning degree. Post-hyperbaric storage at 5 °C revealed an extended shelf life, as an additional benefit of hyperbaric storage. These results show that hyperbaric storage is a very promising food preservation methodology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call