Abstract
Identifying drug-target interactions (DTIs) is a crucial step in drug repurposing and drug discovery. Accurately identifying DTIs in silico can significantly shorten development time and reduce costs. Recently, many sequence-based methods are proposed for DTI prediction and improve performance by introducing the attention mechanism. However, these methods only model single non-covalent inter-molecular interactions among drugs and proteins and ignore the complex interaction between atoms and amino acids. In this article, we propose an end-to-end bio-inspired model based on the convolutional neural network (CNN) and attention mechanism, named HyperAttentionDTI, for predicting DTIs. We use deep CNNs to learn the feature matrices of drugs and proteins. To model complex non-covalent inter-molecular interactions among atoms and amino acids, we utilize the attention mechanism on the feature matrices and assign an attention vector to each atom or amino acid. We evaluate HpyerAttentionDTI on three benchmark datasets and the results show that our model achieves significantly improved performance compared with the state-of-the-art baselines. Moreover, a case study on the human Gamma-aminobutyric acid receptors confirm that our model can be used as a powerful tool to predict DTIs. The codes of our model are available at https://github.com/zhaoqichang/HpyerAttentionDTI and https://zenodo.org/record/5039589. Supplementary data are available at Bioinformatics online.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have