Abstract
We propose a definition of branching-type stationary stochastic processes on rooted trees and related definitions of hyper-positivity for functions on the unit circle and functions on the set of non-negative integers. We then obtain (1) a necessary and sufficient condition on a rooted tree for the existence of non-trivial branching-type stationary stochastic processes on it, (2) a complete criterion of the hyper-positive functions in the setting of rooted homogeneous trees in terms of a variant of the classical Herglotz-Bochner Theorem, (3) a prediction theory result for branching-type stationary stochastic processes.As an unexpected application, we obtain natural hypercontractive inequalities for Hankel operators with hyper-positive symbols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.