Abstract
Multi-view clustering aims to capture the multiple views inherent information by identifying the data clustering that reflects distinct features of datasets. Since there is a consensus in literature that different views of a dataset share a common latent structure, most existing multi-view subspace learning methods rely on the nuclear norm to seek the low-rank representation of the underlying subspace. However, the nuclear norm often fails to distinguish the variance of features for each cluster due to its convex nature and data tends to fall in multiple non-linear subspaces for multi-dimensional datasets. To address these problems, we propose a new and novel multi-view clustering method (HL-L21-TLD-MSC) that unifies the Hyper-Laplacian (HL) and exclusive ℓ 2,1 (L21) regularization with the Tensor Log-Determinant Rank Minimization (TLD) setting. Specifically, the hyper-Laplacian regularization maintains the local geometrical structure that makes the estimation prune to nonlinearities, and the mixed ℓ 2,1 and ℓ 1,2 regularization provides the joint sparsity within-cluster as well as the exclusive sparsity between-cluster. Furthermore, a log-determinant function is used as a tighter tensor rank approximation to discriminate the dimension of features. An efficient alternating algorithm is then derived to optimize the proposed model, and the construction of a convergent sequence to the Karush-Kuhn-Tucker (KKT) critical point solution is mathematically validated in detail. Extensive experiments are conducted on ten well-known datasets to demonstrate that the proposed approach outperforms the existing state-of-the-art approaches with various scenarios, in which, six of them achieve perfect results under our framework developed in this article, demonstrating highl effectiveness for the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Intelligent Systems and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.