Abstract
In many real-world applications, data are often unlabeled and comprised of different representations/views which often provide information complementary to each other. Although several multi-view clustering methods have been proposed, most of them routinely assume one weight for one view of features, and thus inter-view correlations are only considered at the view-level. These approaches, however, fail to explore the explicit correlations between features across multiple views. In this paper, we introduce a tensor-based approach to incorporate the higher-order interactions among multiple views as a tensor structure. Specifically, we propose a multi-linear multi-view clustering (MMC) method that can efficiently explore the full-order structural information among all views and reveal the underlying subspace structure embedded within the tensor. Extensive experiments on realworld datasets demonstrate that our proposed MMC algorithm clearly outperforms other related state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.