Abstract
Aneuploidy, the incorrect number of whole chromosomes, is a common feature of tumors that contributes to their initiation and evolution. Preventing aneuploidy requires properly functioning kinetochores, which are large protein complexes assembled on centromeric DNA that link mitotic chromosomes to dynamic spindle microtubules and facilitate chromosome segregation. The kinetochore leverages at least two mechanisms to prevent aneuploidy: error correction and the spindle assembly checkpoint (SAC). BubR1, a factor involved in both processes, was identified as a cancer dependency and therapeutic target in multiple tumor types; however, it remains unclear what specific oncogenic pressures drive this enhanced dependency on BubR1 and whether it arises from BubR1's regulation of the SAC or error-correction pathways. Here, we use a genetically controlled transformation model and glioblastoma tumor isolates to show that constitutive signaling by RAS or MAPK is necessary for cancer-specific BubR1 vulnerability. The MAPK pathway enzymatically hyperstimulates a network of kinetochore kinases that compromises chromosome segregation, rendering cells more dependent on two BubR1 activities: counteracting excessive kinetochore-microtubule turnover for error correction and maintaining the SAC. This work expands our understanding of how chromosome segregation adapts to different cellular states and reveals an oncogenic trigger of a cancer-specific defect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.