Abstract
Background & aimsHyodeoxycholic acid (HDCA), a hydrophilic bile acid (BA), may prevent and suppress the formation of cholesterol gallstones (CGs). However, the mechanism by which HDCA prevents CGs formation remains unclear. This study aimed to investigate the underlying mechanism of HDCA in preventing CG formation. MethodsC57BL/6J mice were fed either a lithogenic diet (LD), a chow diet, or LD combined with HDCA. The concentration of BAs in the liver and ileum were determined using liquid chromatography-mass spectrometry (LC-MS/MS). Genes involved in cholesterol and BAs metabolism were detected using polymerase chain reaction (PCR). The gut microbiota in the faeces was determined using 16S rRNA. ResultsHDCA supplementation effectively prevented LD-induced CG formation. HDCA increased the gene expression of BA synthesis enzymes, including Cyp7a1, Cyp7b1, and Cyp8b1, and decreased the expression of the cholesterol transporter Abcg5/g8 gene in the liver. HDCA inhibited LD-induced Nuclear farnesoid X receptor (Fxr) activation and reduced the gene expression of Fgf15 and Shp in the ileum. These data indicate that HDCA could prevent CGs formation partly by promoting BA synthesis in the liver and reduced the cholesterol efflux. In addition, HDCA administration reversed the LD-induced decrease in the abundance of norank_f_Muribaculaceae, which was inversely proportional to cholesterol levels. ConclusionsHDCA attenuated CG formation by modulating BA synthesis and gut microbiota. This study provides new insights into the mechanism by which HDCA prevents CG formation. Lay summaryIn this study, we found that HDCA supplementation suppressed LD-induced CGs in mice by inhibiting Fxr in the ileum, enhancing BA synthesis, and increasing the abundance of norank_f_Muribaculaceae in the gut microbiota. HDCA can also downregulate the level of total cholesterol in the serum, liver, and bile.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have