Abstract
Wood is a hygromorphic material, meaning it responds to changes in environmental humidity by changing its geometry. Its cellular biological structure swells during wetting and shrinks during drying. The origin of the moisture-induced deformation lies at the sub-cellular scale. The cell wall can be considered a composite material with stiff cellulose fibrils acting as reinforcement embedded in a hemicellulose/lignin matrix. The bulk of the cellulose fibrils, forming 50% of the cell wall, are oriented longitudinally, forming long-pitched helices. Both components of cell wall matrix are displaying swelling. Moisture sorption and, to a lesser degree, swelling/shrinkage are known to be hysteretic. We quantify the affine strains during the swelling and shrinkage using high resolution images obtained by phase contrast synchrotron X-ray tomography of wood samples of different porosities. The reversibility of the swelling/shrinkage is found for samples with controlled moisture sorption history. The deformation is more hysteretic for high than for low density samples. Swelling/shrinkage due to ad/desorption of water vapour displays also a non-affine component. The reversibility of the swelling/shrinkage indicates that the material has a structural capacity to show a persistent cellular geometry for a given moisture state and a structural composition that allows for moisture-induced transitional states. A collection of qualitative observations of small subsets of cells during swelling/shrinkage is further studied by simulating the observed behaviour. An anisotropic swelling coefficient of the cell wall is found to emerge and its origin is linked to the anisotropy of the cellulose fibrils arrangement in cell wall layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.