Abstract

This paper presents the latest development of HyGenSys, a new sustainable process and technology for the conversion of natural gas to hydrogen and power. The concept combines a specific steam reforming reactor-exchanger with a gas turbine. The heat necessary for the steam reforming reaction comes from hot pressurized flue gases produced in a gas turbine instead of a conventional furnace. Thanks to this high level of heat integration, the overall efficiency is improved and the natural gas consumption is reduced which represents an advantage with regard to economics and CO<sub>2<sub/> emission reduction. In addition to the efficient HyGenSys process scheme itself, the technology of the reactorexchanger also offers a high level of heat integration for even more energy saving.Two main alternatives are examined in order to meet two different requirements. The first one, named HyGenSys-0, focuses on the hydrogen production for the refining and petrochemical application. The second one named HyGenSys-1, concerns the centralized power production with pre-combustion CO<sub>2<sub/>capture. In that case, the produced hydrogen is fully used to fuel a power gas turbine. HyGenSys-1 has been developed and optimised in CACHET, a European Community funded project. The CACHET electrical power objective was 400 MW at the minimum.HyGenSys-0 and HyGenSys-1 are described in detail with challenges and advantages compared to existing technologies.For both alternatives, the heart of the technology is the reactor-exchanger. The reactor-exchanger design relies on an innovative arrangement of bayonet tubes that allows, at large scale, multiple heat exchanges between hot pressurized flue gas, natural gas feed and hydrogen rich stream produced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.