Abstract

A series of nine procollagen samples in which the hydroxyproline content varied from <1% to 44% of the total imino acids was prepared by incubating embryonic chick tendon cells with varying concentrations of α,α′-dipyridyl, an inhibitor of proline hydroxylase. The thermal stability of these procollagen preparations was then investigated by using pepsin digestion at different temperatures as an enzymatic probe of conformation. Using this technique, the denaturation temperature of the procollagen was found to be directly proportional to the hydroxyproline content. A denaturation temperature of 23.5 °C was found for the unhydroxylated procollagen and 37.9 °C for fully hydroxylated procollagen. These results suggest that hydroxyproline is crucial to the thermal stability of the collagen triple helix. They also imply that unhydroxylated molecules are not triple helical within the cell at 37 °C and that triple helix formation may be necessary for normal secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.