Abstract

Hydroxyl-terminated polybutadiene (HTPB)-based polyurethane (PU) networks play indispensable roles in a variety of applications; however, they cannot be reprocessed, resulting in environmental problems and unsustainable industrial development. In this work, recyclable HTPB-based PU vitrimer (HTPB-PUV) networks are fabricated by introduction of a cross-linker 2,2′-(1,4-phenylene)-bis[4-mercaptan-1,3,2-dioxaborolane] (BDB) with dynamic boronic ester bonds into the network. Meanwhile, the BDB can stabilize the HTPB unit in the network by elimination of double bonds. The novel HTPB-PUV networks are constructed by a thiol-ene “click” reaction and an addition reaction between HTPB and cross-linker BDB and isocyanates (HDI). The dynamic HTPB-PUV networks are characterized by dynamic mechanical analysis (DMA) and Fourier transform infrared (FTIR). The obtained dynamic HTPB-PUV networks possess superior thermostability. Moreover, due to the presence of dynamic boronic ester bonds, the HTPB-PUV network topologies can be altered, contributing to the reprocessing, self-healing, and welding abilities of the final polymer. Through a hot press, the pulverized sample can be reprocessed for several cycles, and mechanical properties of the reprocessed samples are similar to those of the pristine one, with the tensile strength being even higher. The self-healed sample exhibits almost complete recovery from scratch after the healing treatment at 130 °C for 3 h. Moreover, a welding efficiency of 120% was achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call