Abstract
Alpha-glucosidase (GAA) activity can be affected by exogenous substances. Hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) are typical metabolites of PAHs that can enter the body through various routes. The effects of 1-hydroxynaphthalene (1-OHNap) and 1-hydroxypyrene (1-OHPyr) on GAA activity and the potential mechanisms were investigated viamultispectroscopic methods and molecular docking. First-order derivative synchronous spectrofluorimetry was successfully applied to analyze the fluorescence quenching of GAA in the GAA-1-OHNap and GAA-1-OHPyr systems. 1-OHNap and 1-OHPyr had strong inhibitory effects on GAA activity. GAA could bind with 1-OHNap and 1-OHPyr in 1:1 mode with binding constants of 3.97 × 104 and 9.42 × 104 L/mol at 298 K. Hydrophobic interactions and hydrogen bonds played pivotal roles in the interactions. 1-OHNap was located closer to the active site of GAA than 1-OHPyr. This work suggests that the disturbance of glycometabolism by exogenous pollutants in the human body is worthy of attention and further investigation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have