Abstract
Heterotrophic nitrifiers continue to be a hiatus in our understanding of the nitrogen cycle. Despite their discovery over 50 years ago, the physiology and environmental role of this enigmatic group remain elusive. The current theory is that heterotrophic nitrifiers are capable of converting ammonia to hydroxylamine, nitrite, nitric oxide, nitrous oxide, and dinitrogen gas via the subsequent actions of nitrification and denitrification. In addition, it was recently suggested that dinitrogen gas may be formed directly from ammonium. Here, we combine complementary high-resolution gas profiles, 15 N isotope labeling studies, and transcriptomics data to show that hydroxylamine is the major product of nitrification in Alcaligenes faecalis . We demonstrated that denitrification and direct ammonium oxidation to dinitrogen gas did not occur under the conditions tested. Our results indicate that A. faecalis is capable of hydroxylamine production from an organic intermediate. These results fundamentally change our understanding of heterotrophic nitrification and have important implications for its biotechnological application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.