Abstract
Illumination of Fe3+, with light of a wavelength varying from 250 to 450 nm, in the presence of the iron chelators ethylenediamine N,N,N',N'-tetraacetic acid (EDTA), ethyleneglycol-bis-(beta-aminoethylether)N,N,N',N'-tetraacet ic acid (EGTA), diethylenetriamine-N,N,N',N',N'-pentaacetic acid (DTPA), or citrate resulted in the reduction of Fe3+ to Fe2+. Fe2+ formation was measured by the formation of its complex with bathophenanthroline disulfonic acid. In all cases Fe2+ formation was completely dependent on the presence of the iron chelator and on the wavelength used for illumination. A correlation was found between the absorption spectrum of the iron-chelator complex and the amount of Fe3+ reduced, suggesting that the absorption of light induced an electron transfer from the chelator to the iron ion. Exposure to oxygen, either during or after illumination, resulted in degradation of the chelator molecule. Illumination of the Fe(3+)-chelator complexes in the presence of H2O2 resulted in the formation of hydroxyl radicals, which could be determined by the formation of the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-hydroxyl radical adduct, using electron spin resonance spectroscopy. Formation of the spin adduct was inhibited by addition of catalase, mannitol, ethanol, or formate, whereas superoxide dismutase had no effect.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have