Abstract

Interaction of the hydroxyl radical with the liquid water surface was studied using classical molecular dynamics computer simulations. From a series of scattering trajectories, the thermal and mass accommodation coefficients of OH on liquid water at 300 K were determined to be 0.95 and 0.83, respectively. The calculated free energy profile for transfer of OH across the air-water interface at 300 K exhibits a minimum in the interfacial region, with the free energy of adsorbtion (DeltaGa) being about 1 kcal/mol more negative than the hydration free energy (DeltaGs). The propensity of the hydroxyl radical for the air-water interface manifests itself in partitioning of OH radicals between the bulk water and the surface. The enhancement of the surface concentration of OH relative to its concentration in the aqueous phase suggests that important OH chemistry may be occurring in the interfacial layer of water droplets, aqueous aerosol particles, and thin water films adsorbed on solid surfaces. This has profound consequences for modeling heterogeneous atmospheric chemical processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.