Abstract

As a rare collagen type IV hereditary kidney disease, X-linked Alport syndrome (XLAS) is the most common form of Alport syndrome, the prevalence of which is estimated at 1:10,000 of the population, four times higher than the prevalence rate of autosomal recessive Alport syndrome. To describe a series of eight XLAS children with persistent hematuria and proteinuria and the clinical outcomes after hydroxychloroquine (HCQ) treatment to assess its efficacy as early intervention. The study retrospectively analysed 8 patients with persistent hematuria and proteinuria at different onset ages who were diagnosed with XLAS and been treated with HCQ. The urinary erythrocyte count, urinary albuminn were measured. Descriptive statistics were used to estimate the patients' responses to HCQ treatment after one month, three months, and six months. After the first month, the three months, and the six months of HCQ treatment, the urinary erythrocyte counts of four, seven, and eight children were significantly reduced; the decreasing proteinuria was found in two, four, and five children. Only one child with increasing proteinuria was found after 1-month HCQ treatment. This proteinuria was maintained after 3-month HCQ treatment but decreased to minor after 6-month HCQ treatment. We present the first potential efficacy of HCQ treatment in XLAS with hematuria and persistent proteinuria. It suggested that HCQ could be an effective treatment to ameliorate hematuria and proteinuria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.