Abstract

BackgroundThe objective was to study the effect of hydroxychloride trace minerals (HTM) on growth performance, carcass quality and gut microbiota of broiler chickens in comparison to sulphate trace minerals (STM). In total 1440 male Ross 308 day-old chicks were divided into 12 replicate pens with 30 birds each per treatment. Four different treatments were tested according to a 2 × 2 factorial study design, where the animals received a three phase diet containing either inorganic Zn from sulphates or Zn from HTM in high (80 mg/kg Zn) or low Zn dosage (20 mg/kg Zn). In all treatments 15 mg/kg Cu was added from the same mineral source as the Zn. Body weight and feed intake were measured on day 0, 10, 27 and 34, while carcass and breast meat yields were measured at the end of the study (day 34). In addition, high-throughput sequencing analysis was performed in digesta samples from ileum and cecum to study the gut microbiome (day 34).ResultsThe results showed an improved (P < 0.05) body weight of broiler chickens fed HTM, regardless of Zn level, on day 27, while on day 34 this effect remained as a tendency (P = 0.0542). In the overall study period, birds fed HTM had a higher (P < 0.05) average daily gain and average daily feed intake when compared to birds fed STM. The mineral source did not affect the carcass characteristics, however, feeding 80 mg/kg Zn resulted in a significantly higher (P = 0.0171) breast meat yield, regardless of source. High-throughput sequencing analysis of the microbiota revealed a higher microbial diversity in the ileum and cecum of HTM fed birds compared to STM fed birds. Taxonomical differences were mainly found in the cecum, specifically between the group fed high and low Zn levels from HTM. This correlated with the mineral contents observed in the cecal digesta. Comparing both groups fed 80 mg/kg Zn, the HTM group had more Streptococcaceae, Streptococcus, Clostridia, Weissella and Leuconostocaceae compared to the STM group.ConclusionsHTM improved growth performance of broiler chickens; and the source and level of Zn modulated the gut microbiota communities in broilers differentially.

Highlights

  • The objective was to study the effect of hydroxychloride trace minerals (HTM) on growth performance, carcass quality and gut microbiota of broiler chickens in comparison to sulphate trace minerals (STM)

  • At day 27 of the study, birds fed HTM had a significantly (P = 0.0229) higher body weight than birds fed STM, regardless of mineral levels. This continued until day 34 as a strong trend (P = 0.0542) towards an increased body weight in birds fed HTM compared to birds fed STM

  • Between 10 and 27 days a tendency was observed towards an increased Average daily gain (ADG) (P = 0.0738) and average daily feed intake (ADFI) (P = 0.0846) for birds fed HTM compared to birds fed STM

Read more

Summary

Introduction

The objective was to study the effect of hydroxychloride trace minerals (HTM) on growth performance, carcass quality and gut microbiota of broiler chickens in comparison to sulphate trace minerals (STM). Both differences in solubility and reactivity between HTM and STM may result in different quantities and forms of Zn present in the different compartments of the gastrointestinal tract. The objective of the present study was to investigate the effects on growth performance, carcass and breast meat yield, and microbiota of broiler chickens fed STM or HTM in high and low Zn dosages in presence of 15 mg/kg Cu of the same mineral source. With the above mentioned differences in solubility and bioavailability, we expected a larger contrast between high and low Zn levels in HTM fed birds compared to STM fed birds

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call